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Front propagation in the one-dimensional autocatalyticA+B—2A reaction with decay
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We consider front propagation in the autocatalytic schémeB— 2A, where we also allow thé particles
to decay A— 0, with a constant decay raf In a one dimensional, discrete, situation fhdomain moves as
a pulse, and its dynamics differs from what is found in higher dimensions. Thus the velocity of the pulse tends
to a finite value wherB approaches from below the critical vale, at which pulses die out. On the other
hand, when approaching, from above, the mean lifetime of the pulse grows &s(8— 8. 2.
[S1063-651%99)13103-9

PACS numbsgs): 05.40—a, 82.20.Mj, 82.65-i

I. INTRODUCTION finite mean lifetimer, (corresponding to a decay raje
= 751) as time passes, the probability of findiAgparticles

Reaction kinetics in low dimensions were extensively in- .
vestigated in the last two decades, since they differ signifilcar to the left of the reaction fro_nt_decreases. Thus_A!he
articles are to be found only within a bounded region of

cantly from the situation in high-dimensional spaces, an i . be Vi d Anpul hich
often violate strongly the classicdimean-field kinetical Space; this region may be viewed as Anpuise, which
schemes based on the mass-action[law4]; this happens in propagates to thg _nght. Here one is interested in knowmg
particular ford=1 and 2, where the reaction terms show a“”def Wh'gh conditions such a pulse propagates, and what Its
strong dependence on high-order particle correlationyeloc'tyv Is. Now S“%b'e pulse propagation Is only possible
functions[5—8] when the decay rate is not too high. Otherwise the number of
Recently much attention was attracted to autocatalytic re'—A‘ partlclgs created per unit timét any velocity of stab]e
propagation becomes smaller than the number of particles

action schemes for which traveling wave front forms and hich d ) tually then all particles di t and th
velocities were investigatd®—15. An important feature of which decay, eventually then ai particies die out and the
process stops.

such reaction schemes is the fact that the reactants are p Let us first Il the situation in three di . di
ticles, and hence obey discrete spatial distributions; this leads et.us Irs rgcta f S| uarllqnhln f “ta? |Tgn3|on§, a? n
to qualitative deviations from the predictions of classical,& continuous picturg21], in which a flat front is moving to

mean-field-like theories, as stated in R¢f6—20. Follow- tTDe ﬂggt._LgtD b?j tlhe (?jffufgion coefficierllt of both sp:)ecigs
ing our investigations of Ref§18,19, here we extend the (Da=Dp=D) and let the first, autocatalytic, stage be de-

autocatalyticA+ B— 2A study by also including the possi- scribed by an effective reaction rate coefficienThe analy-
bility that the A species decayéor, in chemical language, sis of the stability of the traveling wave solutiof#sl] shows

gets inactivated Formally the problem is described by the that stable front propagation is possible if the front’s velocity

chemical expressions exceeds the valuev:=vmn=2VkCoD[1—(B/kCo)].
Moreover, since under the marginal stability principle one
A+B—2A (1) expects that the system chooses a minimum velocity at the
propagation, it follows that stable front propagation is impos-
and sible for 8= B.=kC,. When g approache@. from below,

Umin decreases as
A—0. (2

vENBc— B, ()

To fix the ideas we start from a planar front and have to
its right, in the whole half-space, onlB particles whose thus showing a critical behavior of mean-field type.
mean concentration i€g()=C,. We initiate the reaction In what follows we consider the same problem in one
by adding a thin layer oA particles to the left of the front. dimension, but in a discrete picture. Here B@articles are
The autocatalytic character of the react{dy. (1)] leads to initially randomly distributed, say at the right of the origin,
the creation of a newA particle whenever on@ particle  and the reaction is initiated by addidgparticles to the left
present comes into contact wittBgparticle. This leads to the of the origin. This leads to the formation of a pulse of finite
propagation of the reaction front to the right, into B+illed length, which then propagates into tBeegion. We find that
domain. On the other hand, since thgarticles have only a the situation in this one-dimensiondllD) case differs
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strongly from the one reported above. First the 1D situation 2500 — —
is special in tha{possibly after an initial stagehe number 2000
of particles in the pulse is always finite. This means that due
to fluctuations there always exists a nonzero probability for
the pulse to die out; hence for purely statistical reasons the >\<,< 1000 4 .
lifetime of any such pulse is always finite. However, as we ]
proceed to show, for loyB values the number ok particles

in each pulse is large enough to render purely statistical ex- 0
tinction times extremely long. On the other hand, parallel to
the findings in high dimensions, whehis large enough the

A pulse does not succeed in getting enough new material
through the reactiofEq. (1)], and dies out. Hence pulse
extinctions for small and larg@ occur on vastly different
time scales. The tw@ domains are separated by a critical
value B.. As we show in the following, in one dimension,
when B, is approached from below, tends to a constant,
nonzero value, a fact clearly at variance with E8). Fur- — T
thermore when approaching. from above the mean life- O 2000 4000 6000 8000 10000
time of the pulse grows abx(8— 3.) 2. t

1500
A 1
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FIG. 1. The temporal evolution of a pulse for different values of
Il. SIMULATIONS the decay ratg8. The lines correpon@=0 (solid ling), =104
_ _ (dashed ling B=4%10* (dotted ling, andB=10"2 (dash-dotted
In the simulation we use 1D systems of length 10" and line). The timet is given in Monte Carlo stepdVICS); see text for

L=2x10" and perform(as a rulg 10° independent runs for  getails.(a) The time dependence of the average front posiR)

each average. A lattice site can only be occupied by onef a propagating pulséb) The mean numbeiN,) of A particles in
particle, and we use reflective boundary conditions for thene pulses still alive at time

particles at both ends. At the beginning of the simulation we
start at the left border with am pulse consisting of ten
particles which occupy ten adjacent sites. The rest of th
lattice is randomly filled witB particles of concentratio@
(the valuesCy=0.1 andCy=0.2 are used We stop the ;
simulation before the pulse has a chance to reach the riglilgI
border. We study two different casgs} the case of immo-
bile B particles withDg=0 andD,=1, and(ii) the case of

resentfor values ofB ranging from 0 to 10°) the average
osition of the front(X,). The positionX,(t) is that of the
rightmostA particle, and the averade is taken over those
ns(out of 1& realization$ in which the pulses survive up
timet.
In Fig. 1(b) we show(N,), the averaged numbét, of A
particles; here the average is performed over the same set of

. ; TN AT . i
Zﬁﬁg%.g Oglﬁc?gsrtlcgﬁﬁn}gﬁ&,?,_ zallklg ézir?ér?;lfégman ealizations as fo{X,). For 3#0 we infer from the figure
e part P W ICE, ANGat Na(t) reaches a limiting valu®A(8), which depends

the particle to move next is chosen at random. The step 'ﬁwarkedly onB: Na(B) decreases with increasing

accepted if the corresponding neighboring site is empty, oth- For larger 3 the survival probability of the pulseV(t)
erwise the chosen particle keeps its old position. Wheneve defined as the relative number of pulses still alive at tijne
an A-B pair is found in a nearest neighbor position, the reims out to be closely ex ongntial ie. it (1)
action occurs instantaneously, and Bearticle is relabeled exp(—t/T), with T bein ythe %vera e ’exfin.c’:tion time. In
A. Finally, if the trial particle is arA we remove it from the Fi p2 we ' lot T~ 12 ag a functio% of B for Be[é
system with probabilityy. We consider that one Monte Carlo ng—4 20X 18_4 Itis clear by i tion that the~ 22
step(MCS) elapsed when on the average each particle with ’ ]. Itis clear by inspection tha Vs
D # 0 was picked once. The time associated with one MCS is
At=a?[2maxD,,Dg)] ! in natural units, witha being the
lattice spacingwe havea=1). The value of the decay rate
B is connected withg through 8=q/At. The length of the
lattice L and the maximal simulation timg, ., are chosen . sh
such thatBt,,,>1 andL>uvt,,, hold. The first condition is T_
very restrictive since, as we proceed to show, the interesting S ef
values of 8 are extremely small; thus, for example, in the 2

caseD,=1, Dg=0, andCy=0.2, B, has to be of the order “r
of 1074, .l
First we consider the case of immobiBe particles D4
=1, Dg=0), and takeCy=0.2. Now, as discussed above o - ' L L -
pulse extinction(the disappearance of al’'s) may always ° ‘ ? 104”;2 * ®

occur, but its occurrence probability depends strongly3on
For B<4x10 * we observe no pulse extinction during  FIG. 2. Mean pulse lifetimes as a function ofg for 8> 3, .

simulation times of 18 On the other hand, fop around  Plotted isT~*2vs 3. Note the linear dependence which allows one
103, pulse extinction occurs frequently. In Fig(al we  to determines, .
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distribution of B-particles shows a narrow depletion zone in
the immediate vicinity of the front and tends @y for larger
values ofx.

show. This approach led fo8=0 to qualitatively correct
results in the 1D case, as we demonstrated in [R&f. This

procedure which follows.

o(X)

IIl. SMOLUCHOWSKI APPROACH

In what follows we explain theoretically our numerical
findings. We consideB<B., and assume that the pulse
propagates stably, with velocity. Starting points for us are
the equations for the densities of tAeand theB particles,

X ®) X

0.25 0.25

in Ref. [19], Dp=2D, and Dg=D4+Dg, for the A par-
ticles we have fox<O0,

] o 2 40 60 8 100 g Ugx A Ix2 —BCa, (4)
x (c) x
FIG. 3. The average density distributions under pulse propagaand for theB patrticles, forx>0,
tion. Left column:C,(x) left from the front. Right columnCg(x)
right from the front. Note the differences in tiescales in the left dCpg iCg — &ZCB
and right columns. The values @f correspond tda) 8=10"%; (b) T v X =Dg—/—— (5)
B=4x10"% and(c) B=10"3. X
B dependence is well described by a linear law, iTe. Y2 _In the same moving frame the stationary solutiGhthey
—s(8—B,), or equivalentlyT=s"2(8—B.) 2. A least- ©Xisb correspond to
square analysis of the data fixes the values of the constants to 5
B.=4.1x10"* ands=6.54. — 9°Ca(X) ICA(X)
. . Dao————BCa(X)+v =0 (6)
Let us focus on the velocity of the pulseq,3), defined IX2 X
through d({X,)/dt. Now v(B) behaves neap, differently
than the mean-field predictions of E@®). Equation(3) sug-  for x<0, and to
gests that the velocity of the pulse vanishes wBen g, . In
our case, foB slightly larger than@c, the pulses still glive — 9°Cg(x) dCg(X)
at timet propagate with a well-defined, nonzero velocity. As Dg PR +v X =0 (7)

typical numerical values forw(B), we thus find v(0)
=0.275 andv(8.)=0.234.

Simulations in the case in which both kinds of particles
are mobile Da=Dg=3 and C,=0.1) show results which
are qualitatively similar to those for immobil® particles.
Also here, for fixedg,3[0,10 %], the pulses move with
constant average velocitieg3). Remarkably here3. turns
out to be near %10, i.e., it is almost an order of magni- C (x)zaexp( g) (8)

. A )
tude smaller than in thB,=1, Dg=0 case.

Now we turn to the distribution of particles in the pulse,
and of B particles next to it. We fix the origin of the coordi- wherea is a constant, and
nate system on the rightmaAt(the front particlg. In Fig. 3

for x>0. As boundary conditions o€, and Cz we have
Ca(X)—0 for x— —o andCg(»)—C, for x—, together
with Cg(0)=0.

The solution of Eq(6), which stays finite fox— — o, is

A

we display the density distribution of th& particles to the \/u2+45A,8—v
left of the front, and also that d particles to the right. As p= f> . 9)

parameters we take,=1, Dg=0, andC,=0.2(i.e., immo-

bile B particles. The three rows of Fig. 3 correspond to the  The solution of Eq(7) is
casesB<pB., B~B., and B>pB.. The density ofA par-

ticles as a function of the distaneefrom the front decays p( UXH

nearly exponentially withx, a feature which is to be expected Ce(X)=Cq| 1—exp — =1 |. (10
for an almost constant front velocity. The characteristic de- Dg

02 028 R i cay length is much larger than the interparticle distance. The

Our numerical findings can be explained within a frame-
work based on the Smoluchowski picture, as we proceed to

is also here the case, as can be inferred from Fig. 3, in which
the solid lines are the theoretical curves calculated using the

written in the frame which moves with the pulse. Setting as
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We can now fix the value od by requiring that the par-
ticle flux through the fronti.e., at the origin is conserved.
This condition is

ja(07)=jg(0™). 11
Now the particle fluxj,(x) for both species X=A or \
=B) is

. — dC\(X)
IN(X)=vCy\(X)+ Dy (12
This, together with Eq98) and (10), leads to
a(v+p)=ja(07)=jg(0")=Cqp, (13
so that
2
a=C, (14

V1+4DpBlv2+1

It follows (parallel to the findings of Ref19] for 8=0) that

also for 8+ 0 the Smoluchowski approach is able to deduce
the front forms for a giverw, but that it is unable to deter-

mine the value ob.
The forms of theA andB distributions given by Eqg¥8),
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when g is small and hence the numhdy, of particles in the
pulse is large Il,>1), one has, from Eq8) very close to
the front,

Laa~Cxl(07)=1/a.

17

From Egs.(16) and (17), we now obtain the following

expression:
VLS
CoU

Here K is some numerical constant of the order of unity,
whose value can be estimated based on simulations. One
should note that Eq.18) then allows one to determine

Let us investigate the behavior of Ed.8) in more detail.
Introducing the dimensionless unisandb for the velocity
and the decay rate, respectively, so that

V1+4DpBlv?+1

2C,

(18

v=CoDaV and B=C2Dpb, (19)

we obtain
\/V2+4b+V_K 1 -
2V B A (20

We can now discuss the existence of solutions of(EQ).

(10), and (14) are shown by solid lines in Fig. 3. Here we For this we consider the behavior bfas a function ofv.

used the values of the velocitie$8) which follow from the

simulations; we performed a least-square fit to the values of
(X,a) of Fig. 1. For3=0.0001, 0.0004, and 0.001, we find
v=0.244, 0.234, and 0.206, respectively. One readily se
by inspection that the theoretical forms and the simulation

results agree very well foB<pg.. Note that even forg

> B. the theoretical forms describe the numerical findings

Solving forb in Eq. (20) we obtain

b=KV(K—V). (21)

e"f“he function b(V) shows a simple maximum,b,

= (4/27)K*, which corresponds t¥ .= (4/9)K?.
For b—b, one has

reasonably well, although this case lays outside the validity
domain of our theoretical picture, which assumes a stable
propagation of the front.

In order to fixv we must(as in Ref[19]) take the discrete . . .
nature of the reactants into consideration. Under stablgor h<h; the mean numheN,, of A particles in a stationary

propagation the front's form does not change with time, SODulse stays finite. This can be inferred from the balance

that in the front region neither particle accumulation norequatlon
depletion occur. Let us turn to a theoretical estimate of
and consider the situation immediately after the reaction:
Two A particles now occupy neighboring places on the lat-from which No=vC,/ follows. At b, the number of par-
tice. This newly formed\A pair separates on average by thejcles in the pulse ifN =V, /b.=3K 2.

distancel , o< VD 57, before the next reaction occurs; here Forb>b., Eg.(20) has no solutions, which we interpret

is the average time needed by the nBxparticle to encoun- as the existence of a critical decay rdte=b, (or equiva-

ter the rightmost, i.e., the front position. Thus, using Eq. lently 8=p3.). Note that the behavior ol/(b) differs

(12, strongly from a continuous mean-field-type transition, as
predicted by classical kinetics: Fbr— b the value ofV(b)

does not go to zero as in EQ3) but reaches a constant,
nonzero, valué/.. Above b, the pulse ceases to propagate
not because its propagation velocity tends to zero, but be-
cause the pulse itself disappears, and no other stationary so-
lution apart from the trivial onéonly B’s presenk exists.

V(b)=V + 2\/bc— b. (22)

0=dN,/dt=jg(0") = BNA=0vCo— BNa, (23

7=jg(0")=1Cy, (15)

so that atypical distance between the twé particles in a

propagating pulse is
Laa* VDA/vCy. We remark that the qualitative predictions of our theoret-
ical approach describe the numerical findings very closely:
On the other hand, 55 can be also derived starting from the transition to a nonpropagating regime takes place discon-
the stationary concentration of thke particles close to the tinuously, both in what the propagation velocity and also in
front, as described in Ref19]. In a simple approximation, what the number of particles in the pulse are concerned. The

(16)
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corresponding values gB8. are rather small. On the other cay. This reaction, initiated by addiry particles to a half-
hand, the dependence &nof the numerical values predicted line filled by B’s, leads to a propagating pulse. Forg

is too strong to obtain a quantitative agreement. Thus estiarger than a critical valu@,, stationary pulse propagation
mates for8=0 based on the data of Rdfl9] lead tov is impossible, since al particles die out quite rapidly. Con-
~0.5D,C,, and giveK~0.7. trary to the predictions of the classical, mean-field scheme,
which suggests that the velocity of the pulse vanishes when
approaching8— B., we find that atB. the transition to a
nonpropagating situation takes place discontinuously, so that
the value of the pulse’s velocity does not vanish fér
—B.. At B= . the mean numbeN, of A particles in a

Reverting to natural units we obtaMCQZCOSAIQ and

Bc~C2D A/27. For the values ofy=0.2 andD,=2 used in
simulations, we obtain/;=4/9V(0)~0.09 andB.~0.003.
At B¢, for the numbemN, of particles in a pulse we obtain

Na~6. Thus taking<~0.7 overestimates the value B by jical pulse also stays finite. We can explain these findings
a factor of 8, and underestimatblg at S by the same fac- iy 'the framework of a Smoluchowski-type approach, which
tor. On the other hand, we attain these values by simply s, allows us to describe the distribution of theand B
assumingK to be smaller by a factor of 1.7, which clearly is yensities around the propagating front.

not bad given the very simple approximation, Eg).
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