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Front propagation in the one-dimensional autocatalyticA1B˜2A reaction with decay
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We consider front propagation in the autocatalytic schemeA1B→2A, where we also allow theA particles
to decay,A→0, with a constant decay rateb. In a one dimensional, discrete, situation theA domain moves as
a pulse, and its dynamics differs from what is found in higher dimensions. Thus the velocity of the pulse tends
to a finite value whenb approaches from below the critical valuebc , at which pulses die out. On the other
hand, when approachingbc from above, the mean lifetime of the pulse grows asT}(b2bc)
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I. INTRODUCTION

Reaction kinetics in low dimensions were extensively
vestigated in the last two decades, since they differ sign
cantly from the situation in high-dimensional spaces, a
often violate strongly the classical~mean-field! kinetical
schemes based on the mass-action law@1–4#; this happens in
particular ford51 and 2, where the reaction terms show
strong dependence on high-order particle correlati
functions@5–8#.

Recently much attention was attracted to autocatalytic
action schemes for which traveling wave front forms a
velocities were investigated@9–15#. An important feature of
such reaction schemes is the fact that the reactants are
ticles, and hence obey discrete spatial distributions; this le
to qualitative deviations from the predictions of classic
mean-field-like theories, as stated in Refs.@16–20#. Follow-
ing our investigations of Refs.@18,19#, here we extend the
autocatalyticA1B→2A study by also including the poss
bility that the A species decays~or, in chemical language
gets inactivated!. Formally the problem is described by th
chemical expressions

A1B→2A ~1!

and

A→0. ~2!

To fix the ideas we start from a planar front and have
its right, in the whole half-space, onlyB particles whose
mean concentration isCB(`)5C0 . We initiate the reaction
by adding a thin layer ofA particles to the left of the front
The autocatalytic character of the reaction@Eq. ~1!# leads to
the creation of a newA particle whenever oneA particle
present comes into contact with aB particle. This leads to the
propagation of the reaction front to the right, into theB-filled
domain. On the other hand, since theA particles have only a
PRE 591063-651X/99/59~3!/2561~5!/$15.00
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finite mean lifetimet0 ~corresponding to a decay rateb
5t0

21) as time passes, the probability of findingA particles
far to the left of the reaction front decreases. Thus theA
particles are to be found only within a bounded region
space; this region may be viewed as anA pulse, which
propagates to the right. Here one is interested in know
under which conditions such a pulse propagates, and wha
velocity v is. Now stable pulse propagation is only possib
when the decay rate is not too high. Otherwise the numbe
A particles created per unit time~at any velocity of stable
propagation! becomes smaller than the number of partic
which decay; eventually then allA particles die out and the
process stops.

Let us first recall the situation in three dimensions, and
a continuous picture@21#, in which a flat front is moving to
the right. LetD be the diffusion coefficient of both specie
(DA5DB5D) and let the first, autocatalytic, stage be d
scribed by an effective reaction rate coefficientk. The analy-
sis of the stability of the traveling wave solutions@21# shows
that stable front propagation is possible if the front’s veloc
exceeds the value vc>vmin52AkC0D@12(b/kC0)2#.
Moreover, since under the marginal stability principle o
expects that the system chooses a minimum velocity at
propagation, it follows that stable front propagation is impo
sible for b>bc5kC0 . Whenb approachesbc from below,
vmin decreases as

v}Abc2b, ~3!

thus showing a critical behavior of mean-field type.
In what follows we consider the same problem in o

dimension, but in a discrete picture. Here theB particles are
initially randomly distributed, say at the right of the origin
and the reaction is initiated by addingA particles to the left
of the origin. This leads to the formation of a pulse of fini
length, which then propagates into theB region. We find that
the situation in this one-dimensional~1D! case differs
2561 ©1999 The American Physical Society
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strongly from the one reported above. First the 1D situat
is special in that~possibly after an initial stage! the number
of particles in the pulse is always finite. This means that d
to fluctuations there always exists a nonzero probability
the pulse to die out; hence for purely statistical reasons
lifetime of any such pulse is always finite. However, as
proceed to show, for lowb values the number ofA particles
in each pulse is large enough to render purely statistical
tinction times extremely long. On the other hand, paralle
the findings in high dimensions, whenb is large enough the
A pulse does not succeed in getting enough new mate
through the reaction@Eq. ~1!#, and dies out. Hence puls
extinctions for small and largeb occur on vastly different
time scales. The twob domains are separated by a critic
value bc . As we show in the following, in one dimension
when bc is approached from below,v tends to a constant
nonzero value, a fact clearly at variance with Eq.~3!. Fur-
thermore when approachingbc from above the mean life
time of the pulse grows asT}(b2bc)

22.

II. SIMULATIONS

In the simulation we use 1D systems of lengthL5104 and
L523104 and perform~as a rule! 103 independent runs fo
each average. A lattice site can only be occupied by
particle, and we use reflective boundary conditions for
particles at both ends. At the beginning of the simulation
start at the left border with anA pulse consisting of ten
particles which occupy ten adjacent sites. The rest of
lattice is randomly filled withB particles of concentrationC0
~the valuesC050.1 andC050.2 are used!. We stop the
simulation before the pulse has a chance to reach the
border. We study two different cases:~i! the case of immo-
bile B particles withDB50 andDA51, and~ii ! the case of
equally mobile particles,DA5DB5D5 1

2 . In the simulation
all mobile particles perform random walks on the lattice, a
the particle to move next is chosen at random. The ste
accepted if the corresponding neighboring site is empty, o
erwise the chosen particle keeps its old position. Whene
an A-B pair is found in a nearest neighbor position, the
action occurs instantaneously, and theB particle is relabeled
A. Finally, if the trial particle is anA we remove it from the
system with probabilityq. We consider that one Monte Carl
step~MCS! elapsed when on the average each particle w
DÞ0 was picked once. The time associated with one MC
Dt5a2@2max(DA ,DB)#21 in natural units, witha being the
lattice spacing~we havea51). The value of the decay rat
b is connected withq throughb5q/Dt. The length of the
lattice L and the maximal simulation timetmax are chosen
such thatbtmax@1 andL@vtmax hold. The first condition is
very restrictive since, as we proceed to show, the interes
values ofb are extremely small; thus, for example, in th
caseDA51, DB50, andC050.2, bc has to be of the orde
of 1024.

First we consider the case of immobileB particles (DA
51, DB50), and takeC050.2. Now, as discussed abov
pulse extinction~the disappearance of allA’s! may always
occur, but its occurrence probability depends strongly onb.
For b,431024 we observe no pulse extinction durin
simulation times of 104. On the other hand, forb around
1023, pulse extinction occurs frequently. In Fig. 1~a! we
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present~for values ofb ranging from 0 to 1023) the average
position of the front̂ XA&. The positionXA(t) is that of the
rightmostA particle, and the averagê& is taken over those
runs~out of 103 realizations! in which the pulses survive up
to time t.

In Fig. 1~b! we show^NA&, the averaged numberNA of A
particles; here the average is performed over the same s
realizations as for̂XA&. For bÞ0 we infer from the figure
that NA(t) reaches a limiting valueNA(b), which depends
markedly onb: NA(b) decreases with increasingb.

For largerb the survival probability of the pulseW(t)
~defined as the relative number of pulses still alive at timet)
turns out to be closely exponential, i.e., it isW(t)
}exp(2t/T), with T being the average extinction time. I
Fig. 2 we plot T21/2 as a function of b for bP@8
31024,2031024#. It is clear by inspection that theT21/2 vs

FIG. 1. The temporal evolution of a pulse for different values
the decay rateb. The lines correpondb50 ~solid line!, b51024

~dashed line!, b5431024 ~dotted line!, andb51023 ~dash-dotted
line!. The timet is given in Monte Carlo steps~MCS!; see text for
details.~a! The time dependence of the average front position^XA&
of a propagating pulse.~b! The mean number̂NA& of A particles in
the pulses still alive at timet.

FIG. 2. Mean pulse lifetimesT as a function ofb for b.bc .
Plotted isT21/2 vs b. Note the linear dependence which allows o
to determinebc .
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b dependence is well described by a linear law, i.e.,T21/2

5s(b2bc), or equivalently T5s22(b2bc)
22. A least-

square analysis of the data fixes the values of the constan
bc54.131024 ands56.54.

Let us focus on the velocity of the pulses,v(b), defined
through d^XA&/dt. Now v(b) behaves nearbc differently
than the mean-field predictions of Eq.~3!. Equation~3! sug-
gests that the velocity of the pulse vanishes whenb→bc . In
our case, forb slightly larger thanbc , the pulses still alive
at timet propagate with a well-defined, nonzero velocity. A
typical numerical values forv(b), we thus find v(0)
50.275 andv(bc)50.234.

Simulations in the case in which both kinds of particl
are mobile (DA5DB5 1

2 and C050.1) show results which
are qualitatively similar to those for immobileB particles.
Also here, for fixedb,bP@0,1023#, the pulses move with
constant average velocitiesv(b). Remarkably here,bc turns
out to be near 531025, i.e., it is almost an order of magn
tude smaller than in theDA51, DB50 case.

Now we turn to the distribution ofA particles in the pulse
and ofB particles next to it. We fix the origin of the coord
nate system on the rightmostA ~the front particle!. In Fig. 3
we display the density distribution of theA particles to the
left of the front, and also that ofB particles to the right. As
parameters we takeDA51, DB50, andC050.2 ~i.e., immo-
bile B particles!. The three rows of Fig. 3 correspond to th
casesb,bc , b;bc , and b.bc . The density ofA par-
ticles as a function of the distancex from the front decays
nearly exponentially withx, a feature which is to be expecte
for an almost constant front velocity. The characteristic

FIG. 3. The average density distributions under pulse propa
tion. Left column:CA(x) left from the front. Right column:CB(x)
right from the front. Note the differences in thex scales in the left
and right columns. The values ofb correspond to~a! b51024; ~b!
b5431024, and~c! b51023.
to

-

cay length is much larger than the interparticle distance. T
distribution ofB-particles shows a narrow depletion zone
the immediate vicinity of the front and tends toC0 for larger
values ofx.

Our numerical findings can be explained within a fram
work based on the Smoluchowski picture, as we procee
show. This approach led forb50 to qualitatively correct
results in the 1D case, as we demonstrated in Ref.@19#. This
is also here the case, as can be inferred from Fig. 3, in wh
the solid lines are the theoretical curves calculated using
procedure which follows.

III. SMOLUCHOWSKI APPROACH

In what follows we explain theoretically our numeric
findings. We considerb,bc , and assume that the puls
propagates stably, with velocityv. Starting points for us are
the equations for the densities of theA and theB particles,
written in the frame which moves with the pulse. Setting
in Ref. @19#, D̄A52DA and D̄B5DA1DB , for the A par-
ticles we have forx,0,

]CA

]t
2v

]CA

]x
5D̄A

]2CA

]x2
2bCA , ~4!

and for theB particles, forx.0,

]CB

]t
2v

]CB

]x
5D̄B

]2CB

]x2
. ~5!

In the same moving frame the stationary solutions~if they
exist! correspond to

D̄A

]2CA~x!

]x2
2bCA~x!1v

]CA~x!

]x
50 ~6!

for x,0, and to

D̄B

]2CB~x!

]x2
1v

]CB~x!

]x
50 ~7!

for x.0. As boundary conditions onCA and CB we have
CA(x)→0 for x→2` andCB(`)→C0 for x→`, together
with CB(0)50.

The solution of Eq.~6!, which stays finite forx→2`, is

CA~x!5a expS px

D̄A
D , ~8!

wherea is a constant, and

p5
Av214D̄Ab2v

2
.0. ~9!

The solution of Eq.~7! is

CB~x!5C0F12expS 2
vx

D̄B
D G . ~10!

a-
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We can now fix the value ofa by requiring that the par-
ticle flux through the front~i.e., at the origin! is conserved.
This condition is

j A~02!5 j B~01!. ~11!

Now the particle flux j l(x) for both species (l5A or l
5B) is

j l~x!5vCl~x!1D̄l

]Cl~x!

]x
. ~12!

This, together with Eqs.~8! and ~10!, leads to

a~v1p!5 j A~02!5 j B~01!5C0v, ~13!

so that

a5C0

2

A114D̄Ab/v211
. ~14!

It follows ~parallel to the findings of Ref.@19# for b50) that
also forbÞ0 the Smoluchowski approach is able to dedu
the front forms for a givenv, but that it is unable to deter
mine the value ofv.

The forms of theA andB distributions given by Eqs.~8!,
~10!, and ~14! are shown by solid lines in Fig. 3. Here w
used the values of the velocitiesv(b) which follow from the
simulations; we performed a least-square fit to the value
^XA& of Fig. 1. Forb50.0001, 0.0004, and 0.001, we fin
v50.244, 0.234, and 0.206, respectively. One readily s
by inspection that the theoretical forms and the simulat
results agree very well forb<bc . Note that even forb
.bc the theoretical forms describe the numerical findin
reasonably well, although this case lays outside the vali
domain of our theoretical picture, which assumes a sta
propagation of the front.

In order to fixv we must~as in Ref.@19#! take the discrete
nature of the reactants into consideration. Under sta
propagation the front’s form does not change with time,
that in the front region neither particle accumulation n
depletion occur. Let us turn to a theoretical estimate ofv,
and consider the situation immediately after the reacti
Two A particles now occupy neighboring places on the l
tice. This newly formedAA pair separates on average by t

distanceLAA}AD̄At, before the next reaction occurs; heret
is the average time needed by the nextB particle to encoun-
ter the rightmostA, i.e., the front position. Thus, using Eq
~12!,

t5 j B
21~01!51/vC0 , ~15!

so that atypical distance between the twoA particles in a
propagating pulse is

LAA}AD̄A /vC0. ~16!

On the other hand,LAA can be also derived starting from
the stationary concentration of theA particles close to the
front, as described in Ref.@19#. In a simple approximation
e
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whenb is small and hence the numberNA of particles in the
pulse is large (NA@1), one has, from Eq.~8! very close to
the front,

LAA'cA
21~02!51/a. ~17!

From Eqs.~16! and ~17!, we now obtain the following
expression:

A114D̄Ab/v211

2C0
5KA D̄A

C0v
. ~18!

Here K is some numerical constant of the order of uni
whose value can be estimated based on simulations.
should note that Eq.~18! then allows one to determinev.

Let us investigate the behavior of Eq.~18! in more detail.
Introducing the dimensionless unitsV andb for the velocity
and the decay rate, respectively, so that

v5C0D̄AV and b5C0
2D̄Ab, ~19!

we obtain

AV214b1V

2V
5KA1

V
. ~20!

We can now discuss the existence of solutions of Eq.~20!.
For this we consider the behavior ofb as a function ofV.
Solving for b in Eq. ~20! we obtain

b5KV~K2AV!. ~21!

The function b(V) shows a simple maximum,bc
5(4/27)K4, which corresponds toVc5(4/9)K2.

For b→bc one has

V~b!5Vc1
2

3
Abc2b. ~22!

For b,bc the mean numberNA of A particles in a stationary
pulse stays finite. This can be inferred from the balan
equation

05dNA /dt5 j B~01!2bNA5vC02bNA , ~23!

from which NA5vC0 /b follows. At bc the number of par-
ticles in the pulse isNA

c 5Vc /bc53K22.
For b.bc , Eq. ~20! has no solutions, which we interpre

as the existence of a critical decay rateb5bc ~or equiva-
lently b5bc). Note that the behavior ofV(b) differs
strongly from a continuous mean-field-type transition,
predicted by classical kinetics: Forb→bc the value ofV(b)
does not go to zero as in Eq.~3! but reaches a constan
nonzero, valueVc . Above bc the pulse ceases to propaga
not because its propagation velocity tends to zero, but
cause the pulse itself disappears, and no other stationar
lution apart from the trivial one~only B’s present! exists.

We remark that the qualitative predictions of our theor
ical approach describe the numerical findings very close
the transition to a nonpropagating regime takes place disc
tinuously, both in what the propagation velocity and also
what the number of particles in the pulse are concerned.
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corresponding values ofbc are rather small. On the othe
hand, the dependence onK of the numerical values predicte
is too strong to obtain a quantitative agreement. Thus e
mates forb50 based on the data of Ref.@19# lead to v
'0.5D̄AC0 , and giveK'0.7.

Reverting to natural units we obtainVc'2C0D̄A/9 and
bc'C0

2D̄A/27. For the values ofC050.2 andD̄A52 used in
simulations, we obtainVc54/9V(0)'0.09 andbc'0.003.
At bc , for the numberNA of particles in a pulse we obtai
NA'6. Thus takingK'0.7 overestimates the value ofbc by
a factor of 8, and underestimatesNA at bc by the same fac-
tor. On the other hand, we attain these values by sim
assumingK to be smaller by a factor of 1.7, which clearly
not bad given the very simple approximation, Eq.~18!.

IV. CONCLUSIONS

In this work we numerically analyzed the autocataly
reactionA1B→2A in one dimension underA-particle de-
l

t.

tat

ev
ti-

ly

cay. This reaction, initiated by addingA particles to a half-
line filled by B’s, leads to a propagatingA pulse. Forb
larger than a critical valuebc , stationary pulse propagatio
is impossible, since allA particles die out quite rapidly. Con
trary to the predictions of the classical, mean-field sche
which suggests that the velocity of the pulse vanishes w
approachingb→bc , we find that atbc the transition to a
nonpropagating situation takes place discontinuously, so
the value of the pulse’s velocity does not vanish forb
→bc . At b5bc the mean numberNA of A particles in a
typical pulse also stays finite. We can explain these findi
in the framework of a Smoluchowski-type approach, whi
also allows us to describe the distribution of theA and B
densities around the propagating front.
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